Analysis of Titanium Grade 2 Surface Roughness on Turning Process

Penulis

  • Agus Harijono Politeknik Negeri Malang
  • AM Mufarrih Politeknik Negeri Malang
  • Nanang Qosim Politeknik Negeri Malang

DOI:

https://doi.org/10.21063/jtm.2021.v11.i2.101-106

Kata Kunci:

titanium grade 2, surface roughness, turning, anova

Abstrak

Titanium Grade 2 is a type of material that is often used in industry, especially in materials for biomedical implants. Titanium Grade 2 has a good stiffness to weight ratio, is corrosion resistant and has good biocompatibility in the body. However, it has a low thermal conductivity, so it is necessary to choose the right machining parameter to produce a good surface roughness value. This study aims to determine the characteristics of Titanium Grade 2, namely the surface roughness of the results of lathe machining. The research design used the Taguchi L9 method, with 2 factors and 3 levels. The machining parameters used are spindle rotation 500; 700; 900 rpm and feed speed 25; 50; 75mm/min. The response variable studied was surface roughness. The milling process is carried out using a Maximat V13 lathe. Surface roughness was measured using a Mitutoyo surface roughess tester. Data analysis used ANOVA analysis. The results showed that there was an effect of variations in machining parameters on the surface roughness response. The spindle rotation variable has a p-value of 0.039 and the feeding motion variable has a p-value of 0.025. This shows that the two independent variables have a significant effect on the surface roughness response. The lowest surface roughness can be achieved by setting the spindle rotation at 700 rpm and the feed speed at 25 mm/min.

Referensi

Bruce (2013). Analisis Kekasaran Permukaan Dan Getaran Pada Pemesinan Bubut Menggunakan Pahat Putar Modular (Modular Rotary Tools) Untuk Material Titanium 6Al-4V Eli. Journal of Chemical Information and Modeling. https://doi.org/10.1017/CBO9781107415324.004

Y. Shucai, H. Chunsheng & Z. Minli (2019). A prediction model for titanium alloy surface roughness when milling with micro-textured ball-end cutters at different workpiece inclination angles. International Journal of Advanced Manufacturing Technology. https://doi.org/10.1007/s00170-018-2852-6

Y. Oshida (2012). Bioscience and Bioengineering of Titanium Materials: Second Edition. Bioscience and Bioengineering of Titanium Materials: Second Edition. https://doi.org/10.1016/C2011-0-07805-5

T. Thepsonthi & T. Özel (2012). Multi-objective process optimization for micro-end milling of Ti-6Al-4V titanium alloy. International Journal of Advanced Manufacturing Technology. https://doi.org/10.1007/s00170-012-3980-z

A. Wennerberg & T. Albrektsson (2009). Effects of titanium surface topography on bone integration: A systematic review. Clinical Oral Implants Research. https://doi.org/10.1111/j.1600-0501.2009.01775.x

H. Tapiero, D.M. Townsend & K.D. Tew (2003). Trace elements in human physiology and pathology. Copper. Biomedicine and Pharmacotherapy. https://doi.org/10.1016/S0753-3322(03)00012-X

A. Mufarrih, H. Istiqlaliyah & M.M. Ilha (2019). Optimization of Roundness, MRR and Surface Roughness on Turning Process using Taguchi-GRA. In Journal of Physics: Conference Series. https://doi.org/10.1088/1742-6596/1179/1/012099

A. Bagno & C. Di Bello (2004). Surface treatments and roughness properties of Ti-based biomaterials. Journal of Materials Science: Materials in Medicine. https://doi.org/10.1023/B:JMSM.0000042679.28493.7f

J.P. Davim (2011). Machining of hard materials. Machining of Hard Materials. https://doi.org/10.1007/978-1-84996-450-0W.-K. Chen, Linear Networks and Systems. 2nd ed., R. M. Osgood, Jr., Ed. Belmont, CA: Wadsworth, 1993, pp. 23–35.

S. Ganguli & S.G. Kapoor (2016). Improving the performance of milling of titanium alloys using the atomization-based cutting fluid application system. Journal of Manufacturing Processes. https://doi.org/10.1016/j.jmapro.2016.05.011

J. Nithyanandam, S.L. Das & K. Palanikumar (2015). Inluence of Cutting Parameters in Machining of Titanium Alloy. Indian Journal of Science and Technology, 8(8), 556–562. https://doi.org/10.17485/ijst/2015/v8i/71291

B.O.P. Soepangkat, B. Pramujati, M.K. Effendi, R. Norcahyo & A.M. Mufarrih (2019). Multi-objective Optimization in Drilling Kevlar Fiber Reinforced Polymer Using Grey Fuzzy Analysis and Backpropagation Neural Network–Genetic Algorithm (BPNN–GA) Approaches. International Journal of Precision Engineering and Manufacturing. https://doi.org/10.1007/s12541-019-00017-z

I. Setyowidodo, S. Sutanto, A.M. Mufarrih & I.M Sholehah (2020). Exhaust temperature and peltier element optimization of thermoelectric generator output. In IOP Conference Series: Materials Science and Engineering. https://doi.org/10.1088/1757-899X/850/1/012007

N.E. Karkalos, N.I. Galanis & A.P. Markopoulos (2016). Surface roughness prediction for the milling of Ti-6Al-4V ELI alloy with the use of statistical and soft computing techniques. Measurement: Journal of the International Measurement Confederation. https://doi.org/10.1016/j.measurement.2016.04.039

G. Kiswanto, A. Mandala, M. Azmi & T.J. Ko (2020). The effects of cutting parameters to the surface roughness in high speed cutting of micro-milling titanium alloy ti-6al-4v. Key Engineering Materials, 846 KEM, 133–138. https://doi.org/10.4028/www.scientific.net/KEM.846.133

Unduhan

Diterbitkan

2021-10-31

Cara Mengutip

Analysis of Titanium Grade 2 Surface Roughness on Turning Process. (2021). Jurnal Teknik Mesin, 11(2), 101-106. https://doi.org/10.21063/jtm.2021.v11.i2.101-106