The Accuracy Bound for Positioning the 5R Planar Parallel Manipulator Subjected to Uncertainties in Dimensions and Actuations


  • Adriyan Adriyan Sekolah Tinggi Teknologi Nasional
  • Asmara Yanto Institut Teknologi Padang



kinematic error, dimension uncertainties, actuation uncertainties, interval Newton method, multidimensional bisection method


This article is aimed to determine the accuracy bound for positioning the 5R planar parallel manipulator under the uncertainties in its dimensions and actuation. The accuracy bound is investigated numerically using the interval analysis and multi-dimensional bisection method (MDBM). These numerical methods can give multiple solutions within the workspace of the manipulator. Then, the exact solution is utilized for comparison with the numerical solutions. It is shown that the interval analysis via the interval Newton method gives the guaranteed bounds for positioning accuracy. Meanwhile, the MDBM and the exact solution coupling with the Monte Carlo simulation produce a scattered random value in a parallelogram shape inside the solution yielded by the interval Newton method. Overall, those three methods give nearly a good agreement in terms of that accuracy, but they are different at computation time.


Y. D. Patel and P. M. George, “Parallel Manipulators Applications—A Survey,” Mod. Mech. Eng., vol. 02, no. 03, pp. 57–64, 2012, doi: 10.4236/mme.2012.23008.

Z. Pandilov and Vladimir Dukovski, “Comparison of the Characteristics Between Serial and Parallel Robots,” Acta Teh. Corviniensis - Bull. Eng., vol. VII, no. 1, pp. 143–160, 2014.

L. Kang and B. J. Yi, “Design of Two Foldable Mechanisms Without Parasitic Motion,” IEEE Robot. Autom. Lett., vol. 1, no. 2, pp. 930–937, 2016, doi: 10.1109/LRA.2016.2527055.

M. Chen, Q. Zhang, X. Qin, and Y. Sun, “Kinematic, dynamic, and performance analysis of a new 3-DOF over-constrained parallel mechanism without parasitic motion,” Mech. Mach. Theory, vol. 162, p. 104365, 2021, doi: 10.1016/j.mechmachtheory.2021.104365.

J.-P. Merlet, Parallel Robots, 2nd ed. Dordrecht: Springer, 2006.

F. A. Lara-Molina and E. H. Koroishi, “Kinematic Analysis of Planar 5R Symmetrical Parallel Manipulator Using an Interval Approach,” in 2020 Latin American Robotics Symposium (LARS), 2020 Brazilian Symposium on Robotics (SBR) and 2020 Workshop on Robotics in Education (WRE), 2020, pp. 1–6, doi: 10.1109/LARS/SBR/WRE51543.2020.9307035.

F. A. Lara-Molina, E. H. Koroishi, A. Policarpo, and V. Steffen Jr, “Planar 5R Symmetrical Parallel Mechanism Subjected To Clearances,” in 25th ABCM International Congress of Mechanical Engineering, 2019, pp. 1–7, doi: 10.26678/abcm.cobem2019.cob2019-0108.

F. A. Lara-Molina, E. H. Koroishi, V. Steffen, and L. A. Martins, “Kinematic performance of planar 5R symmetrical parallel mechanism subjected to clearances and uncertainties,” J. Brazilian Soc. Mech. Sci. Eng., vol. 40, no. 4, pp. 1–15, 2018, doi: 10.1007/s40430-018-1118-4.

L. Jaulin, M. Kieffer, O. Didrit, and E. Walter, Applied Interval Analysis - With Examples in Parameter and State Estimation, Robust Control and Robotics. London: Springer-Verlag, 2001.

J.-P. Merlet, “Interval Analysis for Certified Numerical Solution of Problems in Robotics,” Int. J. Appl. Math. Comput. Sci., vol. 19, no. 3, pp. 399–412, 2009, doi: 10.2478/v10006-009-0033-3.

J. Merlet, “Interval Analysis and Reliability in Robotics,” Int. J. Reliab. Saf., vol. 3, no. 1–3, pp. 104–130, 2009.

J. Merlet, “Interval Analysis and Robotics,” in Robotics Research - The 13th International Symposium of Robotics Research, 2010, pp. 147–156.

S. Caro, D. Chablat, A. Goldsztejn, D. Ishii, and C. Jermann, “A branch and prune algorithm for the computation of generalized aspects of parallel robots,” Artif. Intell., vol. 211, no. 1, pp. 34–50, 2014, doi: 10.1016/j.artint.2014.02.001.

D. Bachrathy and G. Stépán, “Bisection method in higher dimensions and the efficiency number,” Period. Polytech. Mech. Eng., vol. 56, no. 2, pp. 81–86, 2012, doi: 10.3311/

R. E. Moore, R. B. Kearfott, and M. J. Cloud, Introduction to Interval Analysis. Society for Industrial and Applied Mathematics, 2009.

J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, “Julia: A fresh approach to numerical computing,” SIAM Rev., vol. 59, no. 1, pp. 65–98, 2017, doi: 10.1137/141000671.

L. Benet and D. P. Sanders, “JuliaIntervals - Guaranteed computations.” [Online]. Available:

D. Bachrathy, “Multi-Dimensional Bisection Method: Julia package to determine the set of roots for ‘any’ parameter dimension and ‘any’ codimension.” [Online]. Available:




How to Cite

Adriyan, A., & Yanto, A. (2022). The Accuracy Bound for Positioning the 5R Planar Parallel Manipulator Subjected to Uncertainties in Dimensions and Actuations. Jurnal Teknik Mesin, 12(1), 1–10.