Characteristics of Palm Kernel Shell/Alumina/Epoxy Composites as Motorcycle Brake Pad Material


  • Mastariyanto Perdana Institut Teknologi Padang
  • Meiki Eru Putra Universitas Dharma Andalas
  • Akmal Akmal Institut Teknologi Padang
  • Hengki Putra Institut Teknologi Padang
  • Murfid Al Ikram Institut Teknologi Padang
  • Ardhy Meidianda Institut Teknologi Padang



natural compositepalm oil, mechanical properties, physical properties, brake pad


Brake pads are one of the components of a motor vehicle that functions to slow down or stop the vehicle's motion. In the concept of braking, one inevitable factor is wear and tear. Wear and tear occur when two objects press against each other and create friction. Composite material is an alternative substance that can be used to replace asbestos brake pads. In this research, shell of palm oil, alumina (Al2O3) powder and epoxy was used for material of brake pad. Type of brake pads was made in this study is brake pads used for motorcycle disc brakes. Addition of volume fraction of alumina powder to 6% in composite material. The aims this study was determine the characterization of brake pad based on composite materials with addition of alumina powder in composite material. This study showed that there was increase of physical and mechanical properties with the addition of alumina powder in composites up 6% by volume fraction. 


P. J. Blau, “Compositions , Functions , and Testing of Friction Brake Materials and Their Additives,” 2001. [Online]. Available:

J. Abutu, S. A. Lawal, M. B. Ndaliman, and R. A. L. Araga, “An Overview of Brake Pad Production Using Non-Hazardous Reinforcement Materials.,” Acta Tech. Corvininesis-Bulletin Eng., vol. 11, no. 3, pp. 143–156, 2018.

K. Malachova et al., “Toxicity and mutagenicity of low-metallic automotive brake pad materials,” Ecotoxicol. Environ. Saf., vol. 131, pp. 37–44, 2016, doi: 10.1016/j.ecoenv.2016.05.003.

S. Kumar and S. K. Ghosh, “Porosity and tribological performance analysis on new developed metal matrix composite for brake pad materials,” J. Manuf. Process., vol. 59, no. July, pp. 186–204, 2020, doi: 10.1016/j.jmapro.2020.09.053.

F. N. Onyeneke, J. U. Anaele, and C. C. Ugwuegbu, “Production of Motor Vehicle Brake Pad Using Local Materials (Perriwinkle and Coconut Shell),” Int. J. Eng. Sci., no. August, pp. 2319–1813, 2014, [Online]. Available:

A. L. Craciun, C. Pinca-Bretotean, D. Utu, and A. Josan, “Tribological properties of nonasbestos brake pad material by using coconut fiber,” IOP Conf. Ser. Mater. Sci. Eng., vol. 163, no. 1, 2017, doi: 10.1088/1757-899X/163/1/012014.

U. D. Idris, V. S. Aigbodion, I. J. Abubakar, and C. I. Nwoye, “Eco-friendly asbestos free brake-pad: Using banana peels,” J. King Saud Univ. - Eng. Sci., vol. 27, no. 2, pp. 185–192, 2015, doi: 10.1016/j.jksues.2013.06.006.

G. Akıncıoğlu, H. Öktem, I. Uygur, and S. Akıncıoğlu, “Determination of Friction-Wear Performance and Properties of Eco-Friendly Brake Pads Reinforced with Hazelnut Shell and Boron Dusts,” Arab. J. Sci. Eng., vol. 43, no. 9, pp. 4727–4737, 2018, doi: 10.1007/s13369-018-3067-8.

F. Yudhanto, S. A. Dhewanto, and S. W. Yakti, “Karakterisasi Bahan Kampas Rem Sepeda Motor Dari Komposit Serbuk Kayu Jati,” Quantum Tek. J. Tek. Mesin Terap., vol. 1, no. 1, pp. 19–27, 2019, doi: 10.18196/jqt.010104.

A. O. A. Ibhadode and I. M. Dagwa, “Development of asbestos-free friction lining material from palm kernel shell,” J. Brazilian Soc. Mech. Sci. Eng., vol. 30, no. 2, pp. 166–173, 2008, doi: 10.1590/S1678-58782008000200010.

M. Perdana, P. Pratiwi, H. Fahmi, Randa, and M. Hendra, “Pengaruh Kecepatan Gesek dan Ukuran serbuk Cangkang Kelapa Sawit Terhadap Laju Keausan Material Komposit Alam,” TRAKSI Maj. Ilm. Tek. Mesin, vol. 21, no. 1, pp. 1–13, 2021 .

M. Perdana, “Pengaruh Fraksi Volume Komposit Serbuk Cangkang Kelapa Sawit/Epoksi Terhadap Kekerasan Dan Laju Keausan,” J. Ipteks Terap., vol. 13, no. 1, p. 45, 2019, doi: 10.22216/jit.2019.v13i1.3297.

ASTM D 3914. “Standard Test Method for In Plane Shear Strenght of Pultruded Glass Reiforced Plastic Rod”, ASTM internasional, 100 Barr Harbor Drive, West Conshohocken, PA 19428-2959, United States. From

ASTM D 790-03. “Standard Test Methods for Flexural Properties of Unreinforced andReinforced Plastics and Electrical Insulating Materials”. ASTM internasional, 100 Barr Harbor Drive, West Conshohocken, PA 19428-2959, United States. From

Ponnilavan, V.,, “Structural and bio-mineralization features of alumina zirconia composite influenced by the combined Ca2+ and PO43- Additions”, Materials Science & Engineering C., Vol. 98, 381-391, 2019.

M, Perdana dan Nurzal, (2019). Pengaruh Fraksi Volume Komposit Serbuk Cangkang Kelapa Sawit/Epoksi Terhadap Kekerasan dan Laju Keausan. Jurnal Ipteks Terapan. Volume 13. Nomor 1. Retrieved from

Agbeleye, A., A., et. al., (2020). Tribological Properties of Aluminium-Clay Composites for Brake Disc Rotor Applications. Journal of King Saud University – Science. Volume 32. Retrieved from

Alfikri, W., dkk, “Sifat Mekanik Komposit Alam Berbahan Dasar Limbah Cangkang Kemiri dan Resin Epoxy”, Prosiding Seminar Nasional XX, Rekayasa dan Aplikasi Teknik Mesin di Industri, 2021, 1-7.




How to Cite

Perdana, M., Eru Putra, M., Akmal, A., Putra, H., Al Ikram, M., & Meidianda, A. (2023). Characteristics of Palm Kernel Shell/Alumina/Epoxy Composites as Motorcycle Brake Pad Material. Jurnal Teknik Mesin, 13(1), 13–18.